Readings in Database Systems, 5th Edition (2015)

Chapter 7: Query Optimization

Introduced by Joe Hellerstein

Selected Readings:

Goetz Graefe and William J. McKenna. The Volcano Optimizer Generator: Extensibility and Efficient Search. ICDE,

1993.

Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.

Volker Markl, Vijayshankar Raman, David Simmen, Guy Lohman, Hamid Pirahesh, Miso Cilimdzic. Robust Query
Processing Through Progressive Optimization. SIGMOD, 2004.

Query optimization is one of the signature components
of database technology—the bridge that connects declara-
tive languages to efficient execution. Query optimizers have
a reputation as one of the hardest parts of a DBMS to imple-
ment well, so it’s no surprise they remain a clear differentia-
tor for mature commercial DBMSs. The best of the open-
source relational database optimizers are limited by com-
parison, and some have relatively naive optimizers that only
work for the simplest of queries.

It’s important to remember that no query optimizer is
truly producing “optimal” plans. First, they all use es-
timation techniques to guess at real plan costs, and it’s
well known that errors in these estimation techniques can
balloon—in some circumstances being as bad as random
guesses [7]. Second, optimizers use heuristics to limit the
search space of plans they choose, since the problem is NP-
hard [6]. One assumption that’s gotten significant attention
recently is the traditional use of 2-table join operators; this
has been shown to be theoretically inferior to new multi-way
join algorithms in certain cases [12].

Despite these caveats, relational query optimization has
proven successful, and has enabled relational database sys-
tems to serve a wide range of bread-and-butter use cases
fairly well in practice. Database vendors have invested many
years into getting their optimizers to perform reliably on a
range of use cases. Users have learned to live with limita-
tions on the number of joins. Optimizers still, for the most
part, make declarative SQL queries a far better choice than
imperative code for most uses.

In addition to being hard to build and tune, serious query
optimizers also have a tendency to grow increasingly com-
plex over time as they evolve to handle richer workloads and
more corner cases. The research literature on database query
optimization is practically a field unto itself, full of technical
details—many of which have been discussed in the literature
by researchers at mature vendors like IBM and Microsoft
who work closely with product groups. For this book, we fo-
cus on the big picture: the main architectures that have been

considered for query optimization and how have they been
reevaluated over time.

Volcano/Cascades

We begin with the state of the art. There are two ref-
erence architectures for query optimization from the early
days of database research that cover most of the serious op-
timizer implementations today. The first is Selinger et al.’s
System R optimizer described in Chapter 3. System R’s op-
timizer is textbook material, implemented in many commer-
cial systems; every database researcher is expected to under-
stand it in detail. The second is the architecture that Goetz
Graefe and his collaborators refined across a series of re-
search projects: Exodus, Volcano, and Cascades. Graefe’s
work is not covered as frequently in the research literature or
the textbooks as the System R work, but it is widely used in
practice, notably in Microsoft SQL Server, but purportedly
in a number of other commercial systems as well. Graefe’s
papers on the topic have something of an insider’s flavor—
targeted for people who know and care about implementing
query optimizers. We chose the Volcano paper for this book
as the most approachable representative of the work, but afi-
cionados should also read the Cascades paper [S]—not only
does it raise and address a number of detailed deficiencies of
Volcano, but it’s the latest (and hence standard) reference for
the approach. Recently, two open-source Cascades-style op-
timizers have emerged: Greenplum’s Orca optimizer is now
part of the Greenplum open source, and Apache Calcite is
an optimizer that can be used with multiple backend query
executors and languages, including LINQ.

Graefe’s optimizer architecture is notable for two main
reasons. First, it was expressly designed to be extensible.
Volcano deserves credit for being quite forward-looking—
long predating MapReduce and the big data stacks—in ex-
ploring the idea that dataflow could be useful for a wide
range of data-intensive applications. As a result, the Graefe
optimizers are not just for compiling SQL into a plan of
dataflow iterators. They can be parameterized for other in-



put languages and execution targets; this is a highly relevant
topic in recent years with the rise of specialized data models
and languages on the one hand (see Chapter 2 and 9), and
specialized execution engines on the other (Chapter 5). The
second innovation in these optimizers was the use of a top-
down or goal-oriented search strategy for finding the cheap-
est plan in the space of possible plans. This design choice
is connected to the extensibility API in Graefe’s designs, but
that is not intrinsic: the Starburst system showed how to do
extensibility for Selinger’s bottom-up algorithm [9]. This
“top-down” vs “bottom-up” debate for query optimization
has advocates on both sides, but no clear winner; a similar
top-down/bottom-up debate came out to be more or less a
tie in the recursive query processing literature as well [13].
Aficionados will be interested to note that these two bodies
of literature-recursive query processing and query optimizer
search—were connected directly in the Evita Raced optimizer,
which implemented both top-down and bottom-up optimizer
search by using recursive queries as the language for imple-
menting an optimizer [1].

Adaptive Query Processing

By the late 1990’s, a handful of trends suggested that the
overall architecture of query optimization deserved a signif-
icant rethink. These trends included:

» Continuous queries over streaming data.

* Interactive approaches to data exploration like Online
Aggregation.

¢ Queries over data sources that are outside the DBMS
and do not provide reliable statistics or performance.

* Unpredictable and dynamic execution environments,
including elastic and multitenant settings and widely
distributed systems like sensor networks.

* Opaque data and user-defined functions in queries,
where statistics can only be estimated by observing
behavior.

In addition, there was ongoing practical concern about the
theoretical fact that plan cost estimation was often erratic for
multi-operator queries [7]. As a result of these trends, inter-
est emerged in adaptive techniques for processing queries,
where execution plans could change mid-query. We present
two complementary points in the design space for adaptive
query processing; there is a long survey with a more com-
prehensive overview [4].

Eddies

The work on eddies, represented by our second paper,
pushed hard on the issue of adaptivity: if query “re-

Readings in Database Systems, 5th Edition (2015)

planning” has to occur mid-execution, why not remove the
architectural distinction between planning and execution en-
tirely? In the eddies approach, the optimizer is encapsulated
as a dataflow operator that is itself interposed along other
dataflow edges. It can monitor the rates of dataflow along
those edges, so it has dynamic knowledge of their behavior,
with whatever history it cares to record. With that ongoing
flow of information, it can dynamically control the rest of the
aspects of query planning via dataflow routing: the order of
commutative operators is determined by the order tuples are
routed through operators (the focus of the first eddies paper
that we include here) the choice of physical operators (e.g.
join algorithms, index selection) is determined by routing tu-
ples among multiple alternative, potentially redundant phys-
ical operators in the flow [14, 3] the scheduling of operators
is determined by buffering inputs and deciding which output
to deliver to next [15]. As an extension, multiple queries can
be scheduled by interposing on their flows and sharing com-
mon operators [10]. Eddies intercept the ongoing dataflow
of query operators while they are in flight, pipelining data
from their inputs to their output. For this reason it’s im-
portant that eddy routing be implemented efficiently; Desh-
pande developed implementation enhancements along these
lines [2]. The advantage of this pipelined approach is that
eddies can adaptively change strategies in the middle of ex-
ecuting a pipelined operator like a join, which is useful if
a query operator is either very long-lived (as in a stream-
ing system) or a very poor choice that should be abandoned
long before it runs to completion. Interestingly, the original
Ingres optimizer also had the ability to make certain query
optimization decisions on a per-tuple basis [18].

Progressive Optimization

The third paper in this section from IBM represents a much
more evolutionary approach, which extends a System R
style optimizer with adaptivity features; this general tech-
nique was pioneered by Kabra and DeWitt [8] but receives
a more complete treatment here. Where eddies focused on
intra-operator reoptimization (while data is “in motion™), this
work focuses on inter-operator reoptimization (when data is
“at rest”). Some of the traditional relational operators in-
cluding sorting and most hash-joins are blocking: they con-
sume their entire input before producing any output. This
presents an opportunity after input is consumed to compare
observed statistics to optimizer predictions, and reoptimize
the “remainder” of the query plan using traditional query
optimization technique. The downside of this approach is
that it does no reoptimization while operators are consuming
their inputs, making it inappropriate for continuous queries
over streams, for pipelining operators like symmetric hash
join [17] or for long-running relational queries that have



poorly-chosen operators in the initial parts of the plan —e.g.
when data is being accessed from data sources outside the
DBMS that do not provide useful statistics [11, 16].

It’s worth noting that these two architectures for adaptiv-
ity could in principle coexist: an eddy is “just” a dataflow
operator, meaning that a traditional optimizer can generate a
query plan with an eddy connecting a set of streaming op-
erators, and also do reoptimization at blocking points in the
dataflow in the manner of our third paper.

Discussion

This brings us to a discussion of current trends in
dataflow architectures, especially in the open source big data
stack. Google MapReduce set back by a decade the conver-
sation about adaptivity of data in motion, by baking blocking
operators into the execution model as a fault-tolerance mech-
anism. It was nearly impossible to have a reasoned conver-
sation about optimizing dataflow pipelines in the mid-to-late
2000’s because it was inconsistent with the Google/Hadoop
fault tolerance model. In the last few years the discus-
sion about execution frameworks for big data has suddenly
opened up wide, with a quickly-growing variety of dataflow
and query systems being deployed that have more similari-
ties than differences (Tenzing, F1, Dremel, DryadLINQ, Na-
iad, Spark, Impala, Tez, Drill, Flink, etc.) Note that all of
the motivating issues for adaptive optimization listed above
are very topical in today’s big data discussion, but not well
treated.

References

Readings in Database Systems, 5th Edition (2015)

More generally, I would say that the “big data” commu-
nity in both research and open source has been far too slow
to focus on query optimization, to the detriment of both the
current systems and the query optimization field. To begin
with, the “hand-planned” MapReduce programming model
remained a topic of conversation for far longer than it should
have. It took a long time for the Hadoop and systems re-
search communities to accept that a declarative language
like SQL or LINQ is a good general-purpose interface, even
while maintaining low-level MapReduce-style dataflow pro-
gramming as a special-case “fast path”. More puzzling is
the fact that even when the community started building SQL
interfaces like Hive, query optimization remained a little-
discussed and poorly-implemented topic. Maybe it’s be-
cause query optimizers are harder to build well than query
executors. Or maybe it was fallout from the historical qual-
ity divide between commercial and open source databases.
MySQL was the open source de facto reference for “database
technology” for the preceding decade, with a naive heuristic
optimizer. Perhaps as a result, many (most?) open source
big data developers didn’t understand—or trust—query op-
timizer technology.

In any case, this tide is turning in the big data community.
Declarative queries have returned as the primary interface
to big data, and there are efforts underway in essentially all
the projects to start building at least a 1980’s-era optimizer.
Given the list of issues I mention above, I’m confident we’ll
also see more innovative query optimization approaches de-
ployed in new systems over the coming years.

[1] T.Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita raced: metacompilation for declarative networks. Proceedings

of the VLDB Endowment, 1(1):1153-1165, 2008.

[2] A.Deshpande. An initial study of overheads of eddies. ACM SIGMOD Record, 33(1):44-49, 2004.

[3] A.Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive query processing. In VLDB, 2004.

[4] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and Trends in Databases, 1(1):1-140,

2007.

[5] G. Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull., 18(3):19-29, 1995.

[6] T.Ibaraki and T. Kameda. On the optimal nesting order for computing n-relational joins. ACM Transactions on Database

Systems (TODS), 9(3):482-502, 1984.

[7] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join results. In SIGMOD, 1991.

[8] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution plans. In SIGMOD, 1998.

[9] G. M. Lohman. Grammar-like functional rules for representing query optimization alternatives. In SIGMOD, 1988.

[10] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive continuous queries over streams. In

SIGMOD, 2002.



Readings in Database Systems, 5th Edition (2015)

[11] J. Melton, J. E. Michels, V. Josifovski, K. Kulkarni, and P. Schwarz. Sql/med: a status report. ACM SIGMOD Record,
31(3):81-89, 2002.

[12] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms:[extended abstract]. In Proceedings of the
31st symposium on Principles of Database Systems, pages 37-48. ACM, 2012.

[13] R. Ramakrishnan and S. Sudarshan. Top-down vs. bottom-up revisited. In Proceedings of the International Logic Pro-
gramming Symposium, pages 321-336, 1991.

[14] V. Raman, A. Deshpande, and J. M. Hellerstein. Using state modules for adaptive query processing. In ICDE. IEEE,
2003.

[15] V. Raman and J. M. Hellerstein. Partial results for online query processing. In SIGMOD, pages 275-286. ACM, 2002.

[16] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. ACM SIGMOD Record,
27(2):130-141, 1998.

[17] A. N. Wilschut and P. M. Apers. Dataflow query execution in a parallel main-memory environment. In Parallel and
Distributed Information Systems, 1991., Proceedings of the First International Conference on, pages 68—77. IEEE, 1991.

[18] E. Wong and K. Youssefi. Decompositiona strategy for query processing. ACM Transactions on Database Systems
(TODS), 1(3):223-241, 1976.



