
Readings in Database Systems, 5th Edition (2015)

Chapter 5: Large-Scale Dataflow Engines
Introduced by Peter Bailis

Selected Readings:

Jeff Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI, 2004.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu. DryadLINQ: A System for General-Purpose Distributed Data-
Parallel Computing Using a High-Level Language. OSDI, 2008.

Of the many developments in data management over the
past decade, MapReduce and subsequent large-scale data
processing systems have been among the most disruptive
and the most controversial. Cheap commodity storage and
rising data volumes led many Internet service vendors to
discard conventional database systems and data warehouses
and build custom, home-grown engines instead. Google’s
string of publications on their large-scale systems, includ-
ing Google File System [10], MapReduce, Chubby [6], and
BigTable [7], are perhaps the most famous and influential
in the market. In almost all cases, these new, homegrown
systems implemented a small subset of the features found
in conventional databases, including high-level languages,
query optimizers, and efficient execution strategies. How-
ever, these systems and the resulting open source Hadoop
ecosystem proved highly popular with many developers.
This led to considerable investment, marketing, research in-
terest, and development on these platforms, which, today are
in flux, but, as an ecosystem, have come to resemble tradi-
tional data warehouses—with some important modifications.
We reflect on these trends here.

History and Successors
Our first reading is the original Google MapReduce pa-

per from 2004. MapReduce was a library built for simpli-
fying parallel, distributed computation over distributed data
at Google’s scale—particularly, the batch rebuild of web
search indexes from crawled pages. It is unlikely that, at
the time, a traditional data warehouse could have handled
this workload. However, compared to a conventional data
warehouse, MapReduce provides a very low-level interface
(two-stage dataflow) that is closely tied to a fault-tolerant ex-
ecution strategy (intermediate materialization between two-
stage dataflow). Equally importantly, MapReduce was de-
signed as a library for parallel programming rather than an
end-to-end data warehousing solution; for example, MapRe-
duce delegates storage to Google File System. At the time,
members of the database community decried the architecture
as simplistic, inefficient, and of limited use [8].

While the original MapReduce paper was released in
2003, there was relatively little additional activity external to

Google until 2006, when Yahoo! open-sourced the Hadoop
MapReduce implementation. Subsequently, there was an ex-
plosion of interest: within a year, a range of projects includ-
ing Dryad (Microsoft) [15], Hive (Facebook) [26], Pig (Ya-
hoo) [22] were all under development. These systems, which
we will call post-MapReduce systems, gained considerable
traction with developers—who were largely concentrated in
Silicon Valley—as well as serious VC investment. A mul-
titude of research spanning the systems, databases, and net-
working communities investigated issues including schedul-
ing, straggler mitigation, fault tolerance, UDF query opti-
mization, and alternative programming models [5].

Almost immediately, post-MapReduce systems ex-
panded their interface and functionality to include more so-
phisticated declarative interfaces, query optimization strate-
gies, and efficient runtimes. Today’s post-MapReduce sys-
tems have come to implement a growing proportion of the
feature set of conventional RDBMSs. The latest generation
of data processing engines such as Spark [27], F1 [24], Im-
pala [16], Tez [1], Naiad [21], Flink/Stratosphere [2], As-
terixDB [3], and Drill [14] frequently i) expose higher-level
query languages such as SQL, ii) more advanced execution
strategies, including the ability to process general graphs
of operators, and iii) use indexes and other functionality of
structured input data sources when possible. In the Hadoop
ecosystem, dataflow engines have become the substrate for a
suite of higher-level functionality and declarative interfaces,
including SQL [4, 26], graph processing [12, 19], and ma-
chine learning [11, 25]. There is also increasing interest in
stream processing functionality, revisiting many of the con-
cepts pioneered in the database community in the 2000s. A
growing commercial and open source ecosystem has devel-
oped ”connectors” to various structured and semi-structured
data sources, catalog functionality (e.g., HCatalog), and data
serving and limited transactional capabilities (e.g., HBase).
Much of this functionality, such as the typical query optimiz-
ers in these frameworks, is rudimentary compared to many
mature commercial databases but is quickly evolving.

DryadLINQ, our second selected reading for this section,
is perhaps most interesting for its interface: a set of em-
bedded language bindings for data processing that integrates

1



Readings in Database Systems, 5th Edition (2015)

seamlessly with Microsoft’s .NET LINQ to provide a paral-
lelized collections library. DryadLINQ executes queries via
the earlier Dryad system [15], which implemented a runtime
for arbitrary dataflow graphs using a replay-based fault toler-
ance. While DryadLINQ still restricts programmers to a set
of side-effect free dataset transformations (including “SQL-
like” operations), it presents a considerably higher-level in-
terface than Map Reduce. DryadLINQ’s language integra-
tion, lightweight fault tolerance, and basic query optimiza-
tion techniques proved influential in later dataflow systems,
including Apache Spark [27] and Microsoft’s Naiad [21].

Impact and Legacy
There are at least three lasting impacts of the MapReduce

phenomenon that might not have occurred otherwise. These
ideas are – like distributed dataflow itself – not necessarily
novel, but the ecosystem of post-MapReduce dataflow and
storage systems have broadly increased their impact:

1.) Schema flexibility. Perhaps most importantly, traditional
data warehouse systems are walled gardens: ingested data is
pristine, curated, and has structure. In contrast, MapReduce
systems process arbitrarily structured data, whether clean or
dirty, curated or not. There is no loading step. This means
users can store data first and consider what to do with it later.
Coupled with the fact that storage (e.g., in the Hadoop File
System) is considerably cheaper than in a traditional data
warehouse, users can afford to retain data for longer and
longer. This is a major shift from traditional data ware-
houses and is a key factor behind the rise and gathering
of ”Big Data.” A growing number of storage formats (e.g.,
Avro, Parquet, RCFile) marry semi-structured data and ad-
vances in storage such as columnar layouts. In contrast with
XML, this newest wave of semi-structured data is even more
flexible. As a result, extract-transform-load (ETL) tasks are
major workload for post-MapReduce engines. It is difficult
to overstate the impact of schema flexibility on the modern
practice of data management at all levels, from analyst to
programmer and analytics vendor, and we believe it will be-
come even more important in the future. However, this het-
erogeneity is not free: curating such “data lakes” is expen-
sive (much more than storage) and is a topic we consider in
depth in Chapter 12.

2.) Interface flexibility. Today, most all users inter-
act with Big Data engines in SQL-like languages. How-
ever, these engines also allow users to program using a
combination of paradigms. For example, an organization
might use imperative code to perform file parsing, SQL to
project a column, and machine learning subroutines to clus-
ter the results – all within a single framework. Tight, id-
iomatic language integration as in DryadLINQ is common-
place, further improving programmability. While traditional

database engines historically supported user-defined func-
tions, these new engines’ interfaces make user-defined com-
putations simpler to express and also make it easier to in-
tegrate the results of user-defined computations with the re-
sults of queries expressed using traditional relational con-
structs like SQL. Interface flexibility and integration is a
strong selling point for data analytics offerings; the ability
to combine ETL, analytics, and post-processing in a single
system is remarkably convenient to programmers — but not
necessarily to users of traditional BI tools, which make use
of traditional JDBC interfaces.

3.) Architectural flexibility. A common critique of
RDBMSs is that their architecture is too tightly coupled:
storage, query processing, memory management, transaction
processing, and so on are closely intertwined, with a lack of
clear interfaces between them in practice. In contrast, as a
result of its bottom-up development, the Hadoop ecosystem
has effectively built a data warehouse as a series of modules.
Today, organizations can write and run programs against the
raw file system (e.g., HDFS), any number of dataflow en-
gines (e.g., Spark), using advanced analytics packages (e.g.,
GraphLab [18], Parameter Server [17]), or via SQL (e.g., Im-
pala [16]). This flexibility adds performance overhead, but
the ability to mix and match components and analytics pack-
ages is unprecedented at this scale. This architectural flex-
ibility is perhaps most interesting to systems builders and
vendors, who have additional degrees of freedom in design-
ing their infrastructure offerings.

To summarize, a dominant theme in today’s distributed
data management infrastructure is flexibility and heterogene-
ity: of storage formats, of computation paradigms, and of
systems implementations. Of these, storage format hetero-
geneity is probably the highest impact by an order of mag-
nitude or more, simply because it impacts novices, experts,
and architects alike. In contrast, heterogeneity of computa-
tion paradigms most impacts experts and architects, while
heterogeneity of systems implementations most impacts ar-
chitects. All three are relevant and exciting developments for
database research, with lingering questions regarding market
impact and longevity.

Looking Ahead
In a sense, MapReduce was a short-lived, extreme ar-

chitecture that blew open a design space. The architecture
was simple and highly scalable, and its success in the open
source domain led many to realize that there was demand for
alternative solutions and the principle of flexibility that it em-
bodied (not to mention a market opportunity for cheaper data
warehousing solutions based on open source). The resulting
interest is still surprising to many and is due to many fac-
tors, including community zeitgeist, clever marketing, eco-

2



Readings in Database Systems, 5th Edition (2015)

nomics, and technology shifts. It is interesting to consider
which differences between these new systems and RDBMSs
are fundamental and which are due to engineering improve-
ments.

Today, there is still debate about the appropriate archi-
tecture for large-scale data processing. As an example, Ras-
mussen et al. provide a strong argument for why interme-
diate fault tolerance is not necessary except in very large
(100+ node) clusters [23]. As another example, McSherry
et al. have colorfully illustrated that many workloads can be
efficiently processed using a single server (or thread!), elimi-
nating the need for distribution at all [20]. Recently, systems
such as the GraphLab project [18] suggested that domain-
specific systems are necessary for performance; later work,
including Grail [9] and GraphX [12], argued this need not
be the case. A further wave of recent proposals have also
suggested new interfaces and systems for stream processing,
graph processing, asynchronous programming, and general-
purpose machine learning. Are these specialized systems ac-
tually required, or can one analytics engine rule them all?
Time will tell, but I perceive a push towards consolidation.

Finally, we would be remiss not to mention Spark, which
is only six years old but is increasingly popular with devel-
opers and is very well supported both by VC-backed startups
(e.g., Databricks) and by established firms such as Cloud-
era and IBM. While we have included DryadLINQ as an
example of a post-MapReduce system due to its historical
significance and technical depth, the Spark paper [27], writ-
ten in the early days of the project, and recent extensions
including SparkSQL [4], are worthwhile additional reads.
Like Hadoop, Spark rallied major interest at a relatively
early stage of maturity. Today, Spark still has a ways to go
before its feature set rivals that of a traditional data ware-
house. However, its feature set is rapidly growing and ex-
pectations of Spark as the successor to MapReduce in the
Hadoop ecosystem are high; for example, Cloudera is work-
ing to replace MapReduce with Spark in the Hadoop ecosys-
tem [13]. Time will tell whether these expectations are ac-
curate; in the meantime, the gaps between traditional ware-
houses and post-MapReduce systems are quickly closing, re-
sulting in systems that are as good at data warehousing as
traditional systems, but also much more.

Commentary: Michael Stonebraker
26 October 2015

Recently, there has been considerable interest in data analytics as
part of the marketing moniker “big data”. Historically, this meant
business intelligence (BI) analytics and was serviced by BI appli-

cations (Cognos, Business Objects, etc.) talking to a relational data
warehouse (such as Teradata, Vertica, Red Shift, Greenplum, etc.).
More recently it has become associated with “data science”. In
this context, let’s start ten years ago with Map-Reduce, which was
purpose-built by Google to support their web crawl data base. Then,
the marketing guys took over with the basic argument: “Google is
smart; Map-Reduce is Google’s next big thing, so it must be good”.
Cloudera, Hortonworks and Facebook were in the vanguard in hyp-
ing Map-Reduce (and its open source look-alike Hadoop). A few
years ago, the market was abuzz drinking the Map-Reduce koolaid.
About the same time, Google stopped using Map-Reduce for the
application that it was purpose-built for, moving instead to Big Ta-
ble. With a delay of about 5 years, the rest of the world is seeing
what Google figured out earlier; Map-Reduce is not an architecture
with any broad scale applicability.

In effect Map-Reduce suffers from the following two problems:

1. It is inappropriate as a platform on which to build data ware-
house products. There is no interface inside any commercial
data warehouse product which looks like Map-Reduce, and
for good reason. Hence, DBMSs do not want this sort of
platform.

2. It is inappropriate as a platform on which to build distributed
applications. Not only is the Map-Reduce interface not flex-
ible enough for distributed applications but also a message
passing system that uses the file system is way too slow to
be interesting.

Of course, that has not stopped the Map-Reduce vendors. They
have simply rebranded their platform to be HDFS (a file system)
and have built products based on HDFS that do not include Map-
Reduce. For example, Cloudera has recently introduced Impala,
which is a SQL engine, not built on Map-Reduce. In point of fact,
Impala does not really use HDFS either, choosing to drill through
that layer to read and write the underlying local Linux files di-
rectly. HortonWorks and Facebook have similar projects underway.
As such the Map-Reduce crowd has turned into a SQL crowd and
Map-Reduce, as an interface, is history. Of course, HDFS has se-
rious problems when used by a SQL engine, so it is not clear that
it will have any legs, but that remains to be seen. In any case, the
Map-Reduce-HDFS market will merge with the SQL-data ware-
house market; and may the best systems prevail. In summary, Map-
Reduce has failed as a distributed systems platform, and vendors
are using HDFS as a file system under data warehouse products.

This brings us to Spark. The original argument for Spark is that
it is a faster version of Map-Reduce. It is a main memory platform
with a fast message passing interface. Hence, it should not suffer
from the performance problems of Map-Reduce when used for dis-
tributed applications. However, according to Spark’s lead author
Matei Zaharia, more than 70% of the Spark accesses are through
SparkSQL. In effect, Spark is being used as a SQL engine, not as
a distributed applications platform! In this context Spark has an
identity problem. If it is a SQL platform, then it needs some mech-
anism for persistence, indexing, sharing of main memory between
users, meta data catalogs, etc. to be competitive in the SQL/data
warehouse space. It seems likely that Spark will turn into a data
warehouse platform, following Hadoop along the same path.

3



Readings in Database Systems, 5th Edition (2015)

On the other hand, 30% of Spark accesses are not to Spark-
SQL and are primarily from Scala. Presumably this is a distributed
computing load. In this context, Spark is a reasonable distributed
computing platform. However, there are a few issues to consider.
First, the average data scientist does a mixture of data management
and analytics. Higher performance comes from tightly coupling the
two. In Spark there is no such coupling, since Spark’s data formats
are not necessarily common across these two tasks. Second, Spark
is main memory-only (at least for now). Scalability requirements
will presumably get this fixed over time. As such, it will be inter-
esting to see how Spark evolves off into the future.

In summary, I would like to offer the following takeaways:

• Just because Google thinks something is a good idea does
not mean you should adopt it.

• Disbelieve all marketing spin, and figure out what benefit
any given product actually has. This should be especially
applied to performance claims.

• The community of programmers has a love affair with “the
next shiny object”. This is likely to create “churn” in your
organization, as the “half-life” of shiny objects may be quite
short.

References

[1] Apache Tez. https://tez.apache.org/.

[2] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, et al.
The Stratosphere platform for big data analytics. The VLDB Journal, 23(6):939–964, 2014.

[3] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil, M. Cheelangi, K. Faraaz, et al.
Asterixdb: A scalable, open source bdms. In VLDB, 2014.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al.
Spark SQL: Relational data processing in spark. In SIGMOD, 2015.

[5] S. Babu and H. Herodotou. Massively parallel databases and MapReduce systems. Foundations and Trends in Databases,
5(1):1–104, 2013.

[6] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In OSDI, 2006.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data. In OSDI, 2006.

[8] D. DeWitt and M. Stonebraker. Mapreduce: A major step backwards. The Database Column, 2008.

[9] J. Fan, A. Gerald, S. Raj, and J. M. Patel. The case against specialized graph analytics engines. In CIDR, 2015.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In SOSP, 2003.

[11] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan.
Systemml: Declarative machine learning on mapreduce. In ICDE, 2011.

[12] J. E. Gonzales, R. S. Xin, D. Crankshaw, A. Dave, M. J. Franklin, and I. Stoica. Graphx: Unifying data-parallel and
graph-parallel analytics. In OSDI, 2014.

[13] D. Harris. Forbes: Why Cloudera is saying ’Goodbye, MapReduce’ and ’Hello, Spark’, 2015. http://fortune.com/

2015/09/09/cloudera-spark-mapreduce/.

[14] M. Hausenblas and J. Nadeau. Apache Drill: Interactive ad-hoc analysis at scale. Big Data, 1(2):100–104, 2013.

[15] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from sequential building
blocks. In EuroSys, 2007.

[16] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs, et al.
Impala: A modern, open-source sql engine for hadoop. In CIDR, 2015.

[17] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In OSDI, 2014.

4

https://tez.apache.org/
http://fortune.com/2015/09/09/cloudera-spark-mapreduce/
http://fortune.com/2015/09/09/cloudera-spark-mapreduce/


Readings in Database Systems, 5th Edition (2015)

[18] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. In VLDB, 2012.

[19] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, 2010.

[20] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what COST? In HotOS, 2015.

[21] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A timely dataflow system. In SOSP,
2013.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign language for data processing. In
SIGMOD, 2008.

[23] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A. Vahdat. Themis: An i/o-efficient mapreduce. In SoCC,
2012.

[24] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner,
et al. F1: A distributed sql database that scales. In VLDB, 2013.

[25] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin, M. Jordan, T. Kraska, et al. Mli:
An api for distributed machine learning. In ICDM, 2013.

[26] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: A warehousing
solution over a map-reduce framework. In VLDB, 2009.

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.

5


