
Readings in Database Systems, 5th Edition (2015)

Chapter 4: New DBMS Architectures
Introduced by Michael Stonebraker

Selected Readings:

Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond Lau,
Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, Stan Zdonik. C-store: A Column-
oriented DBMS. SIGMOD, 2005.

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike
Zwilling. Hekaton: SQL Server’s Memory-optimized OLTP Engine. SIGMOD, 2013.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, Michael Stonebraker. OLTP Through the Looking Glass, and
What We Found There. SIGMOD, 2008.

Probably the most important thing that has happened in
the DBMS landscape is the death of “one size fits all”. Until
the early 2000’s the traditional disk-based row-store archi-
tecture was omni-present. In effect, the commercial vendors
had a hammer and everything was a nail.

In the last fifteen years, there have been several major
upheavals, which we discuss in turn.

First, the community realized that column stores are dra-
matically superior to row stores in the data warehouse mar-
ketplace. Data warehouses found early acceptance in cus-
tomer facing retail environments and quickly spread to cus-
tomer facing data in general. Warehouses recorded historical
information on customer transactions. In effect, this is the
who-what-why-when-where of each customer interaction.

The conventional wisdom is to structure a data ware-
house around a central Fact table in which this transactional
information is recorded. Surrounding this are dimension ta-
bles which record information that can be factored out of the
Fact table. In a retail scenario one has dimension tables for
Stores, Customers, Products and Time. The result is a so-
called star schema [3]. If stores are grouped into regions,
then there may be multiple levels of dimension tables and a
snowflake schema results.

The key observation is that Fact tables are generally “fat”
and often contain a hundred or more attributes. Obviously,
they also “long” since there are many, many facts to record.
In general, the queries to a data warehouse are a mix of re-
peated requests (produce a monthy sales report by store) and
“ad hoc” ones. In a retail warehouse, for example, one might
want to know what is selling in the Northeast when a snow-
storm occurs and what is selling along the Atlantic seaboard
during hurricanes.

Moreover, nobody runs a select * query to fetch all of
the rows in the Fact table. Instead, they invariably specify an
aggregate, which retrieves a half-dozen attributes out of the

100 in the table. The next query retrieves a different set, and
there is little-to-no locality among the filtering criteria.

In this use case, it is clear that a column store will move
a factor of 16 less data from the disk to main memory than
a row store will (6 columns versus 100). Hence, it has an
unfair advantage. Furthermore, consider a storage block. In
a column store, there is a single attribute on that block, while
a row store will have 100. Compression will clearly work
better on one attribute than on 100. In addition, row stores
have a header on the front of each record (in SQLServer it is
apparently 16 bytes). In contrast, column stores are careful
to have no such header.

Lastly, a row-based executor has an inner loop whereby
a record is examined for validity in the output. Hence, the
overhead of the inner loop, which is considerable, is paid per
record examined. In contrast, the fundamental operation of a
column store is to retrieve a column and pick out the qualify-
ing items. As such, the inner-loop overhead is paid once per
column examined and not once per row examined. As such
a column executor is way more efficient in CPU time and
retrieves way less data from the disk. In most real-world en-
vironments, column stores are 50–100 times faster than row
stores.

Early column stores included Sybase IQ [5], which ap-
peared in the 1990s, and MonetDB [2]. However, the
technology dates to the 1970s [1, 4]. In the 2000’s C-
Store/Vertica appeared as well-financed startup with a high
performance implementation. Over the next decade the en-
tire data warehouse market morphed from a row-store world
to a column store world. Arguably, Sybase IQ could have
done the same thing somewhat earlier, if Sybase had invested
more aggressively in the technology and done a multi-node
implementation. The advantages of a column executor are
persuasively discussed in [2], although it is “down in the
weeds” and hard to read.

The second major sea change was the precipitous decline
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in main memory prices. At the present time, one can buy a
1Terabyte for perhaps $25,000, and a high performance com-
puting cluster with a few terabytes can be bought for maybe
$100K. The key insight is that OLTP data bases are just not
that big. One terabyte is a very big OLTP data base, and is
a candidate for main memory deployment. As noted in the
looking glass paper in this section, one does not want to run
a disk-based row store when data fits in main memory the
overhead is just way too high.

In effect, the OLTP marketplace is now becoming a main
memory DBMS marketplace. Again, traditional disk-based
row stores are just not competitive. To work well, new solu-
tions are needed for concurrency control, crash recovery, and
multi-threading, and I expect OLTP architectures to evolve
over the next few years.

My current best guess is that nobody will use traditional
two phase locking. Techniques based on timestamp ordering
or multiple versions are likely to prevail. The third paper in
this section discusses Hekaton, which implements a state-of-
the art MVCC scheme.

Crash recovery must also be dealt with. In general, the
solution proposed is replication, and on-line failover, which
was pioneered by Tandem two decades ago. The traditional
wisdom is to write a log, move the log over the network,
and then roll forward at the backup site. This active-passive
architecture has been shown in [6] to be a factor of 3 infe-
rior to an active-active scheme where the transactions is sim-
ply run at each replica. If one runs an active-active scheme,
then one must ensure that transactions are run in the same or-

der at each replica. Unfortunately, MVCC does not do this.
This has led to interest in deterministic concurrency control
schemes, which are likely to be wildly faster in an end-to-end
system that MVCC.

In any case, OLTP is going to move to main memory
deployment, and a new class of main memory DBMSs is un-
folding to support this use case.

The third phenomenon that has unfolded is the “no SQL”
movement. In essence, there are 100 or so DBMSs, which
support a variety of data models and have the following two
characteristics:

1. “Out of box” experience. They are easy for a pro-
grammer to get going and do something productive.
RDBMSs, in contrast, are very heavyweight, requir-
ing a schema up front.

2. Support for semi-structured data. If every record can
have values for different attributes, then a traditional
row store will have very, very wide tuples, and be very
sparse, and therefore inefficient.

This is a wake-up call to the commercial vendors to make
systems that are easier to use and support semi-structured
data types, such as JSON. In general, I expect the No SQL
market to merge with the SQL market over time as RDBMSs
react to the two points noted above.

The fourth sea change is the emergence of the
Hadoop/HDFS/Spark environment, which is discussed in
Chapter 6.
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