Readings in Database Systems, 5th Edition (2015)

Chapter 3: Techniques Everyone Should Know

Introduced by Peter Bailis

Selected Readings:

Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price. Access path
selection in a relational database management system. SIGMOD, 1979.

C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, Peter M. Schwarz. ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM Transactions on

Database Systems, 17(1), 1992, 94-162.

Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, Irving L. Traiger. Granularity of Locks and Degrees of Consistency

in a Shared Data Base. , IBM, September, 1975.

Rakesh Agrawal, Michael J. Carey, Miron Livny. Concurrency Control Performance Modeling: Alternatives and Implica-
tions. ACM Transactions on Database Systems, 12(4), 1987, 609-654.

C. Mohan, Bruce G. Lindsay, Ron Obermarck. Transaction Management in the R* Distributed Database Management
System. ACM Transactions on Database Systems, 11(4), 1986, 378-396.

In this chapter, we present primary and near-primary
sources for several of the most important core concepts in
database system design: query planning, concurrency con-
trol, database recovery, and distribution. The ideas in this
chapter are so fundamental to modern database systems that
nearly every mature database system implementation con-
tains them. Three of the papers in this chapter are far and
away the canonical references on their respective topics.
Moreover, in contrast with the prior chapter, this chapter fo-
cuses on broadly applicable techniques and algorithms rather
than whole systems.

Query Optimization

Query optimization is important in relational database
architecture because it is core to enabling data-independent
query processing. Selinger et al.’s foundational paper on Sys-
tem R enables practical query optimization by decomposing
the problem into three distinct subproblems: cost estimation,
relational equivalences that define a search space, and cost-
based search.

The optimizer provides an estimate for the cost of exe-
cuting each component of the query, measured in terms of
I/O and CPU costs. To do so, the optimizer relies on both
pre-computed statistics about the contents of each relation
(stored in the system catalog) as well as a set of heuristics for
determining the cardinality (size) of the query output (e.g.,
based on estimated predicate selectivity). As an exercise,
consider these heuristics in detail: when do they make sense,
and on what inputs will they fail? How might they be im-
proved?

Using these cost estimates, the optimizer uses a dynamic

programming algorithm to construct a plan for the query.
The optimizer defines a set of physical operators that imple-
ment a given logical operator (e.g., looking up a tuple using
a full ’segment’ scan versus an index). Using this set, the
optimizer iteratively constructs a “’left-deep” tree of opera-
tors that in turn uses the cost heuristics to minimize the total
amount of estimated work required to run the operators, ac-
counting for “interesting orders” required by upstream con-
sumers. This avoids having to consider all possible orderings
of operators but is still exponential in the plan size; as we
discuss in Chapter 7, modern query optimizers still strug-
gle with large plans (e.g., many-way joins). Additionally,
while the Selinger et al. optimizer performs compilation in
advance, other early systems, like Ingres [25] interpreted the
query plan — in effect, on a tuple-by-tuple basis.

Like almost all query optimizers, the Selinger et al. op-
timizer is not actually “optimal” — there is no guarantee
that the plan that the optimizer chooses will be the fastest
or cheapest. The relational optimizer is closer in spirit to
code optimization routines within modern language compil-
ers (i.e., will perform a best-effort search) rather than math-
ematical optimization routines (i.e., will find the best solu-
tion). However, many of today’s relational engines adopt the
basic methodology from the paper, including the use of bi-
nary operators and cost estimation.

Concurrency Control

Our first paper on transactions, from Gray et al., intro-
duces two classic ideas: multi-granularity locking and mul-
tiple lock modes. The paper in fact reads as two separate
papers.



First, the paper presents the concept of multi-granularity
locking. The problem here is simple: given a database with
a hierarchical structure, how should we perform mutual ex-
clusion? When should we lock at a coarse granularity (e.g.,
the whole database) versus a finer granularity (e.g., a single
record), and how can we support concurrent access to dif-
ferent portions of the hierarchy at once? While Gray et al.’s
hierarchical layout (consisting of databases, areas, files, in-
dexes, and records) differs slightly from that of a modern
database system, all but the most rudimentary database lock-
ing systems adapt their proposals today.

Second, the paper develops the concept of multiple de-
grees of isolation. As Gray et al. remind us, a goal of concur-
rency control is to maintain data that is ”consistent” in that it
obeys some logical assertions. Classically, database systems
used serializable transactions as a means of enforcing con-
sistency: if individual transactions each leave the database
in a “consistent” state, then a serializable execution (equiv-
alent to some serial execution of the transactions) will guar-
antee that all transactions observe a “consistent” state of the
database [5]. Gray et al.’s "Degree 3 protocol describes the
classic (strict) “two-phase locking” (2PL), which guarantees
serializable execution and is a major concept in transaction
processing.

However, serializability is often considered too expen-
sive to enforce. To improve performance, database systems
often instead execute transactions using non-serializable iso-
lation. In the paper here, holding locks is expensive: waiting
for a lock in the case of a conflict takes time, and, in the event
of a deadlock, might take forever (or cause aborts). There-
fore, as early as 1973, database systems such as IMS and
System R began to experiment with non-serializable policies.
In a lock-based concurrency control system, these policies
are implemented by holding locks for shorter durations. This
allows greater concurrency, may lead to fewer deadlocks and
system-induced aborts, and, in a distributed setting, may per-
mit greater availability of operation.

In the second half of this paper, Gray et al. provide
a rudimentary formalization of the behavior of these lock-
based policies. Today, they are prevalent; as we discuss in
Chapter 6, non-serializable isolation is the default in a ma-
jority of commercial and open source RDBMSs, and some
RDBMSs do not offer serializability at all. Degree 2 is now
typically called Repeatable Read isolation and Degree 1 is
now called Read Committed isolation, while Degree O is in-
frequently used [1]. The paper also discusses the important
notion of recoverability: policies under which a transaction
can be aborted (or "undone”) without affecting other trans-
actions. All but Degree 0 transactions satisfy this property.

A wide range of alternative concurrency control mecha-
nisms followed Gray et al.’s pioneering work on lock-based

Readings in Database Systems, 5th Edition (2015)

serializability. As hardware, application demands, and ac-
cess patterns have changed, so have concurrency control
subsystems. However, one property of concurrency con-
trol remains a near certainty: there is no unilateral “best”
mechanism in concurrency control. The optimal strategy is
workload-dependent. To illustrate this point, we’ve included
a study from Agrawal, Carey, and Livny. Although dated,
this paper’s methodology and broad conclusions remain on
target. It’s a great example of thoughtful, implementation-
agnostic performance analysis work that can provide valu-
able lessons over time.

Methodologically, the ability to perform so-called “back
of the envelope” calculations is a valuable skill: quickly es-
timating a metric of interest using crude arithmetic to ar-
rive at an answer within an order of magnitude of the cor-
rect value can save hours or even years of systems im-
plementation and performance analysis. This is a long
and useful tradition in database systems, from the “Five
Minute Rule” [12] to Google’s “Numbers Everyone Should
Know” [4]. While some of the lessons drawn from these es-
timates are transient [10, 8], often the conclusions provide
long-term lessons.

However, for analysis of complex systems such as con-
currency control, simulation can be a valuable intermediate
step between back of the envelope and full-blown systems
benchmarking. The Agrawal study is an example of this ap-
proach: the authors use a carefully designed system and user
model to simulate locking, restart-based, and optimistic con-
currency control.

Several aspects of the evaluation are particularly valu-
able. First, there is a ”crossover” point in almost every graph:
there aren’t clear winners, as the best-performing mechanism
depends on the workload and system configuration. In con-
trast, virtually every performance study without a crossover
point is likely to be uninteresting. If a scheme “always wins,”
the study should contain an analytical analysis, or, ideally, a
proof of why this is the case. Second, the authors consider
a wide range of system configurations; they investigate and
discuss almost all parameters of their model. Third, many
of the graphs exhibit non-monotonicity (i.e., don’t always go
up and to the right); this a product of thrashing and resource
limitations. As the authors illustrate, an assumption of infi-
nite resources leads to dramatically different conclusions. A
less careful model that made this assumption implicit would
be much less useful.

Finally, the study’s conclusions are sensible. The pri-
mary cost of restart-based methods is "wasted” work in the
event of conflicts. When resources are plentiful, specula-
tion makes sense: wasted work is less expensive, and, in the
event of infinite resources, it is free. However, in the event
of more limited resources, blocking strategies will consume



fewer resources and offer better overall performance. Again,
there is no unilaterally optimal choice. However, the paper’s
concluding remarks have proven prescient: computing re-
sources are still scarce, and, in fact, few commodity systems
today employ entirely restart-based methods. However, as
technology ratios — disk, network, CPU speeds — continue to
change, re-visiting this trade-off is valuable.

Database Recovery

Another major problem in transaction processing is
maintaining durability: the effects of transaction process-
ing should survive system failures. A near-ubiquitous tech-
nique for maintaining durability is to perform logging: dur-
ing transaction execution, transaction operations are stored
on fault-tolerant media (e.g., hard drives or SSDs) in a log.
Everyone working in data systems should understand how
write-ahead logging works, preferably in some detail.

The canonical algorithm for implementing a “No Force,
Steal” WAL-based recovery manager is IBM’s ARIES algo-
rithm, the subject of our next paper. (Senior database re-
searchers may tell you that very similar ideas were invented
at the same time at places like Tandem and Oracle.) In
ARIES, the database need not write dirty pages to disk at
commit time (“No Force”), and the database can flush dirty
pages to disk at any time (“Steal”) [15]; these policies al-
low high performance and are present in almost every com-
mercial RDBMS offering but in turn add complexity to the
database. The basic idea in ARIES is to perform crash recov-
ery in three stages. First, ARIES performs an analysis phase
by replaying the log forwards in order to determine which
transactions were in progress at the time of the crash. Sec-
ond, ARIES performs a redo stage by (again) replaying the
log and (this time) performing the effects of any transactions
that were in progress at the time of the crash. Third, ARIES
performs an undo stage by playing the log backwards and
undoing the effect of uncommitted transactions. Thus, the
key idea in ARIES is to “repeat history” to perform recov-
ery; in fact, the undo phase can execute the same logic that
is used to abort a transaction during normal operation.

ARIES should be a fairly simple paper but it is perhaps
the most complicated paper in this collection. In graduate
database courses, this paper is a rite of passage. However,
this material is fundamental, so it is important to understand.
Fortunately, Ramakrishnan and Gehrke’s undergraduate text-
book [22] and a survey paper by Michael Franklin [7] each
provide a milder treatment. The full ARIES paper we have
included here is complicated significantly by its diversionary
discussions of the drawbacks of alternative design decisions
along the way. On the first pass, we encourage readers to ig-
nore this material and focus solely on the ARIES approach.
The drawbacks of alternatives are important but should be

Readings in Database Systems, 5th Edition (2015)

saved for a more careful second or third read. Aside from its
organization, the discussion of ARIES protocols is further
complicated by discussions of managing internal state like
indexes (i.e., nested top actions and logical undo logging —
the latter of which is also used in exotic schemes like Escrow
transactions [20]) and techniques to minimize downtime dur-
ing recovery. In practice, it is important for recovery time to
appear as short as possible; this is tricky to achieve.

Distribution

Our final paper in this chapter concerns transaction exe-
cution in a distributed environment. This topic is especially
important today, as an increasing number of databases are
distributed — either replicated, with multiple copies of data
on different servers, or partitioned, with data items stored on
disjoint servers (or both). Despite offering benefits to capac-
ity, durability, and availability, distribution introduces a new
set of concerns. Servers may fail and network links may be
unreliable. In the absence of failures, network communica-
tion may be costly.

We concentrate on one of the core techniques in dis-
tributed transaction processing: atomic commitment (AC).
Very informally, given a transaction that executes on mul-
tiple servers (whether multiple replicas, multiple partitions,
or both), AC ensures that the transaction either commits or
aborts on all of them. The classic algorithm for achieving
AC dates to the mid-1970s and is called Two-Phase Commit
(2PC; not to be confused with 2PL above!) [9, 18]. In ad-
dition to providing a good overview of 2PC and interactions
between the commit protocol and the WAL, the paper here
contains two variants of AC that improve its performance.
The Presumed Abort variant allows processes to avoid forc-
ing an abort decision to disk or acknowledge aborts, reducing
disk utilization and network traffic. The Presumed Commit
optimization is similar, optimizing space and network traffic
when more transactions commit. Note the complexity of the
interactions between the 2PC protocol, local storage, and the
local transaction manager; the details are important, and cor-
rect implementation of these protocols can be challenging.

The possibility of failures substantially complicates AC
(and most problems in distributed computing). For exam-
ple, in 2PC, what happens if a coordinator and participant
both fail after all participants have sent their votes but be-
fore the coordinator has heard from the failed participant?
The remaining participants will not know whether or to com-
mit or abort the transaction: did the failed participant vote
YES or vote NO? The participants cannot safely continue. In
fact, any implementation of AC may block, or fail to make
progress, when operating over an unreliable network [2].
Coupled with a serializable concurrency control mechanism,
blocking AC means throughput may stall. As a result, a re-



lated set of AC algorithms examined AC under relaxed as-
sumptions regarding both the network (e.g., by assuming a
synchronous network) [24] and the information available to
servers (e.g., by making use of a “failure detector” that de-
termines when nodes fail) [14].

Finally, many readers may be familiar with the closely re-
lated problem of consensus or may have heard of consensus
implementations such as the Paxos algorithm. In consensus,
any proposal can be chosen, as long as all processes eventu-
ally will agree on it. (In contrast, in AC, any individual par-
ticipant can vote NO, after which all participants must abort.)
This makes consensus an “easier” problem than AC [13], but,
like AC, any implementation of consensus can also block
in certain scenarios [6]. In modern distributed databases,
consensus is often used as the basis for replication, to en-
sure replicas apply updates in the same order, an instance of
state-machine replication (see Schneider’s tutorial [23]). AC
is often used to execute transactions that span multiple par-

References

Readings in Database Systems, 5th Edition (2015)

titions. Paxos by Lamport [17] is one of the earliest (and
most famous, due in part to a presentation that rivals ARIES
in complexity) implementations of consensus. However, the
Viewstamped Replication [19] and Raft [21], ZAB [16], and
Multi-Paxos [3] algorithms may be more helpful in practice.
This is because these algorithms implement a distributed log
abstraction (rather than a ’consensus object’ as in the original
Paxos paper).

Unfortunately, the database and distributed computing
communities are somewhat separate. Despite shared inter-
ests in replicated data, transfer of ideas between the two were
limited for many years. In the era of cloud and Internet-scale
data management, this gap has shrunk. For example, Gray
and Lamport collaborated in 2006 on Paxos Commit [11], an
interesting algorithm combining AC and Lamport’s Paxos.
There is still much to do in this intersection, and the num-
ber of “techniques everyone should know” in this space has
grown.

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI SQL isolation levels. In

SIGMOD, 1995.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database systems, volume 370.

Addison-Wesley New York, 1987.

[3] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspective. In PODC, 2007.

[4] J. Dean. Designs, lessons and advice from building large distributed systems (keynote). In LADIS, 2009.

(5]

(6]

(7]

(8]
(9]

[10]

[11]

[12]

[13]

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate locks in a database
system. Communications of the ACM, 19(11):624-633, 1976.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process. Journal
of the ACM (JACM), 32(2):374-382, 1985.

M. J. Franklin. Concurrency control and recovery. The Computer Science and Engineering Handbook, pages 1-58-1077,
1997.

G. Graefe. The five-minute rule twenty years later, and how flash memory changes the rules. In DaMoN, 2007.

J. Gray. Notes on data base operating systems. In Operating Systems: An Advanced Course, volume 60 of Lecture Notes
in Computer Science, pages 393-481. Springer Berlin Heidelberg, 1978.

J. Gray and G. Graefe. The five-minute rule ten years later, and other computer storage rules of thumb. ACM SIGMOD
Record, 26(4):63-68, 1997.

J. Gray and L. Lamport. Consensus on transaction commit. ACM Transactions on Database Systems (TODS), 31(1):133—
160, Mar. 2006.

J. Gray and F. Putzolu. The 5 minute rule for trading memory for disc accesses and the 10 byte rule for trading memory
for cpu time. In SIGMOD, 1987.

R. Guerraoui. Revisiting the relationship between non-blocking atomic commitment and consensus. In WDAG, 1995.



Readings in Database Systems, 5th Edition (2015)

[14] R. Guerraoui, M. Larrea, and A. Schiper. Non blocking atomic commitment with an unreliable failure detector. In SRDS,
1995.

[15] T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM Computing Surveys (CSUR),
15(4):287-317, 1983.

[16] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-performance broadcast for primary-backup systems. In DSN,
2011.

[17] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems (TOCS), 16(2):133-169, 1998.
[18] B. Lampson and H. Sturgis. Crash recovery in a distributed data storage system. Technical report, 1979.

[19] B. Liskov and J. Cowling. Viewstamped replication revisited. Technical report, MIT, 2012.

[20] P. E. O’Neil. The escrow transactional method. ACM Transactions on Database Systems, 11(4):405-430, 1986.
[21] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In USENIX ATC, 2014.

[22] R. Ramakrishnan and J. Gehrke. Database management systems. McGraw Hill, 2000.

[23] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing
Surveys (CSUR), 22(4):299-319, 1990.

[24] D. Skeen. Nonblocking commit protocols. In SIGMOD, 1981.

[25] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of ingres. ACM Transactions on
Database Systems (TODS), 1(3):189-222, 1976.



