
Readings in Database Systems, 5th Edition (2015)

Chapter 2: Traditional RDBMS Systems
Introduced by Michael Stonebraker

Selected Readings:

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim Gray, Patricia P. Griffiths, W.
Frank King III, Raymond A. Lorie, Paul R. McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford
W. Wade, Vera Watson. System R: Relational Approach to Database Management. ACM Transactions on Database
Systems, 1(2), 1976, 97-137.

Michael Stonebraker and Lawrence A. Rowe. The design of POSTGRES. SIGMOD, 1986.

David J. DeWitt, Shahram Ghandeharizadeh, Donovan Schneider, Allan Bricker, Hui-I Hsiao, Rick Rasmussen. The
Gamma Database Machine Project. IEEE Transactions on Knowledge and Data Engineering, 2(1), 1990, 44-62.

In this section are papers on (arguably) the three most im-
portant real DBMS systems. We will discuss them chrono-
logically in this introduction.

The System R project started under the direction of Frank
King at IBM Research probably around 1972. By then Ted
Codd’s pioneering paper was 18 months old, and it was obvi-
ous to a lot of people that one should build a prototype to test
out his ideas. Unfortunately, Ted was not a permitted to lead
this effort, and he went off to consider natural language in-
terfaces to DBMSs. System R quickly decided to implement
SQL, which morphed from a clean block structured language
in 1972 [2] to a much more complex structure described in
the paper here [1]. See [4] for a commentary on the design
of the SQL language, written a decade later.

System R was structured into two groups, the “lower
half” and the “upper half”. They were not totally synchro-
nized, as the lower half implemented links, which were not
supported by the upper half. In defense of the decision by
the lower half team, it was clear they were competing against
IMS, which had this sort of construct, so it was natural to in-
clude it. The upper half simply didn’t get the optimizer to
work for this construct.

The transaction manager is probably the biggest legacy
of the project, and it is clearly the work of the late Jim Gray.
Much of his design endures to this day in commercial sys-
tems. Second place goes to the System R optimizer. The
dynamic programming cost-based approach is still the gold
standard for optimizer technology.

My biggest complaint about System R is that the team
never stopped to clean up SQL. Hence, when the “upper
half” was simply glued onto VSAM to form DB2, the lan-
guage level was left intact. All the annoying features of the
language have endured to this day. SQL will be the COBOL
of 2020, a language we are stuck with that everybody will
complain about.

My second biggest complaint is that System R used a
subroutine call interface (now ODBC) to couple a client ap-
plication to the DBMS. I consider ODBC among the worst
interfaces on the planet. To issue a single query, one has
to open a data base, open a cursor, bind it to a query and
then issue individual fetches for data records. It takes a page
of fairly inscrutable code just to run one query. Both In-
gres [11] and Chris Date [3] had much cleaner language em-
beddings. Moreover, Pascal-R [9] and Rigel [8] were also
elegant ways to include DBMS functionality in a program-
ming language. Only recently with the advent of Linq [7]
and Ruby on Rails [5] are we seeing a resurgence of cleaner
language-specific enbeddings.

After System R, Jim Gray went off to Tandem to work on
Non-stop SQL and Kapali Eswaren did a relational startup.
Most of the remainder of the team remained at IBM and
moved on to work on various other projects, include R*.

The second paper concerns Postgres. This project started
in 1984 when it was obvious that continuing to prototype
using the academic Ingres code base made no sense. A re-
counting of the history of Postgres appears in [10], and the
reader is directed there for a full blow-by-blow recap of the
ups and downs in the development process.

However, in my opinion the important legacy of Post-
gres is its abstract data type (ADT) system. User-defined
types and functions have been added to most mainstream
relational DBMSs, using the Postgres model. Hence, that
design feature endures to this day. The project also exper-
imented with time-travel, but it did not work very well. I
think no-overwrite storage will have its day in the sun as
faster storage technology alters the economics of data man-
agement.

It should also be noted that much of the importance of
Postgres should be accredited to the availability of a robust
and performant open-source code line. This is an example
of the open-source community model of development and

1



Readings in Database Systems, 5th Edition (2015)

maintenance at its best. A pickup team of volunteers took
the Berkeley code line in the mid 1990’s and has been shep-
herding its development ever since. Both Postgres and 4BSD
Unix [6] were instrumental in making open source code the
preferred mechanism for code development.

The Postgres project continued at Berkeley until 1992,
when the commercial company Illustra was formed to sup-
port a commercial code line. See [10] for a description of the
ups and downs experienced by Illustra in the marketplace.

Besides the ADT system and open source distribution
model, a key legacy of the Postgres project was a genera-
tion of highly trained DBMS implementers, who have gone
on to be instrumental in building several other commercial
systems

The third system in this section is Gamma, built at Wis-
consin between 1984 and 1990. In my opinion, Gamma
popularized the shared-nothing partitioned table approach to
multi-node data management. Although Teradata had the
same ideas in parallel, it was Gamma that popularized the
concepts. In addition, prior to Gamma, nobody talked about
hash-joins so Gamma should be credited (along with Kit-
suregawa Masaru) with coming up with this class of algo-
rithms.

Essentially all data warehouse systems use a Gamma-
style architecture. Any thought of using a shared disk or
shared memory system have all but disappeared. Unless net-
work latency and bandwidth get to be comparable to disk
bandwidth, I expect the current shared-nothing architecture
to continue.

References

[1] D. D. Chamberlin. Early history of sql. Annals of the History of Computing, IEEE, 34(4):78–82, 2012.

[2] D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query language. In Proceedings of the 1974 ACM
SIGFIDET (now SIGMOD) workshop on Data description, access and control, pages 249–264. ACM, 1974.

[3] C. J. Date. An architecture for high-level language database extensions. In SIGMOD, 1976.

[4] C. J. Date. A critique of the SQL database language. ACM SIGMOD Record, 14(3), Nov. 1984.

[5] D. H. Hansson et al. Ruby on rails. http://www.rubyonrails.org.

[6] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The design and implementation of the 4.4 BSD operating
system. Pearson Education, 1996.

[7] E. Meijer, B. Beckman, and G. Bierman. Linq: reconciling object, relations and XML in the .NET framework. In
SIGMOD, 2006.

[8] L. A. Rowe and K. A. Shoens. Data abstraction, views and updates in RIGEL. In SIGMOD, 1979.

[9] J. W. Schmidt. Some high level language constructs for data of type relation. ACM Trans. Database Syst., 2(3), Sept.
1977.

[10] M. Stonebraker. The land sharks are on the squawk box. Communications of the ACM. To appear.

[11] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of ingres. ACM Transactions on
Database Systems (TODS), 1(3):189–222, 1976.

2

http://www.rubyonrails.org

