
Readings in Database Systems, 5th Edition (2015)

Chapter 11: A Biased Take on a Moving Target: Complex Analytics
by Michael Stonebraker

In the past 5-10 years, new analytic workloads have
emerged that are more complex than the typical business in-
telligence (BI) use case. For example, internet advertisers
might want to know “How do women who bought an Ap-
ple computer in the last four days differ statistically from
women who purchased a Ford pickup truck in the same time
period?” The next question might be: “Among all our ads,
which one is the most profitable to show to the female Ford
buyers based on their click-through likelihood?” These are
the questions asked by today’s data scientists, and represent
a very different use case from the traditional SQL analyt-
ics run by business intelligence specialists. It is widely as-
sumed that data science will completely replace business in-
telligence over the next decade or two, since it represents a
more sophisticated approach to mining data warehouses for
new insights. As such, this document focuses on the needs
of data scientists.

I will start this section with a description of what I see
as the job description of a data scientist. After cleaning and
wrangling his data, which currently consumes the vast ma-
jority of his time and which is discussed in the section on
data integration, he generally performs the following itera-
tion:

Until (tired) {
Data management operation(s);

Analytic operation(s);

}
In other words, he has an iterative discovery process,

whereby he isolates a data set of interest and then performs
some analytic operation on it. This often suggests either a
different data set to try the same analytic on or a different an-
alytic on the same data set. By and large what distinguishes
data science from business intelligence is that the analytics
are predictive modeling, machine learning, regressions, ...
and not SQL analytics.

In general, there is a pipeline of computations that con-
stitutes the analytics. For example, Tamr has a module which
performs entity consolidation (deduplication) on a collection
of records, say N of them, at scale. To avoid the N ** 2
complexity of brute force algorithms, Tamr identifies a col-
lection of “features”, divides them into ranges that are un-
likely to co-occur, computes (perhaps multiple) “bins” for
each record based on these ranges, reshuffles the data in par-
allel so it is partitioned by bin number, deduplicates each bin,
merges the results, and finally constructs composite records
out of the various clusters of duplicates. This pipeline is
partly SQL-oriented (partitioning) and partly array-oriented

analytics. Tamr seems to be typical of data science work-
loads in that it is a pipeline with half a dozen steps.

Some analytic pipelines are “one-shots” which are run
once on a batch of records. However, most production ap-
plications are incremental in nature. For example, Tamr is
run on an initial batch of input records and then periodically
a new “delta” must be processed as new or changed input
records arrive. There are two approaches to incremental op-
eration. If deltas are processed as “mini batches” at periodic
intervals of (say) one day, one can add the next delta to the
previously processed batch and rerun the entire pipeline on
all the data each time the input changes. Such a strategy will
be very wasteful of computing resources. Instead, we will
focus on the case where incremental algorithms must be run
after an initial batch processing operation. Such incremental
algorithms require intermediate states of the analysis to be
saved to persistent storage at each interation. Although the
Tamr pipeline is of length 6 or so, each step must be saved
to persistent storage to support incremental operation. Since
saving state is a data management operation, this make the
analytics pipeline of length one.

The ultimate “real time” solution is to run incremental
analytics continuously services by a streaming platform such
as discussed in the section on new DBMS technology. De-
pending on the arrival rate of new records, either solution
may be preferred.

Most complex analytics are array-oriented, i.e. they are
a collection of linear algebra operations defined on arrays.
Some analytics are graph oriented, such as social network
analysis. It is clear that arrays can be simulated on table-
based systems and that graphs can be simulated on either ta-
ble systems or array systems. As such, later in this document,
we discuss how many different architectures are needed for
this used case.

Some problems deal with dense arrays, which are ones
where almost all cells have a value. For example, an array of
closing stock prices over time for all securities on the NYSE
will be dense, since every stock has a closing price for each
trading day. On the other hand, some problems are sparse.
For example, a social networking use case represented as a
matrix would have a cell value for every pair of persons that
were associated in some way. Clearly, this matrix will be
very sparse. Analytics on sparse arrays are quite different
from analytics on dense arrays.

In this section we will discuss such workloads at scale.
If one wants to perform such pipelines on “small data” then
any solution will work fine.

1

Readings in Database Systems, 5th Edition (2015)

The goal of a data science platform is to support this it-
erative discovery process. We begin with a sad truth. Most
data science platforms are file-based and have nothing to do
with DBMSs. The preponderance of analytic codes are run
in R, MatLab, SPSS, SAS and operate on file data. In addi-
tion, many Spark users are reading data from files. An exem-
plar of this state of affairs is the NERSC high performance
computing (HPC) system at Lawrence Berkeley Labs. This
machine is used essentially exclusively for complex analyt-
ics; however, we were unable to get the Vertica DBMS to run
at all, because of configuration restrictions. In addition, most
“big science” projects build an entire software stack from the
bare metal on up. It is plausible that this state of affairs will
continue, and DBMSs will not become a player in this mar-
ket. However, there are some hopeful signs such as the fact
that genetic data is starting to be deployed on DBMSs, for
example the 1000 Genomes Project [13] is based on SciDB.

In my opinion, file system technology suffers from sev-
eral big disadvantages. First metadata (calibration, time,
etc.) is often not captured or is encoded in the name of the
file, and is therefore not searchable. Second, sophisticated
data processing to do the data management piece of the data
science workload is not available and must be written (some-
how). Third, file data is difficult to share data among col-
leagues. I know of several projects which export their data
along with their parsing program. The recipient may be un-
able to recompile this accessor program or it generates an
error. In the rest of this discussion, I will assume that data
scientists over time wish to use DBMS technology. Hence,
there will be no further discussion of file-based solutions.

With this backdrop, we show in Table 1 a classification
of data science platforms. To perform the data management
portion, one needs a DBMS, according to our assumption
above. This DBMS can have one of two flavors. First, it can
be record-oriented as in a relational row store or a NoSQL
engine or column-oriented as in most data warehouse sys-
tems. In these cases, the DBMS data structure is not focused
on the needs of analytics, which are essentially all array-
oriented, so a more natural choice would be an array DBMS.
The latter case has the advantage that no conversion from a
record or column structure is required to perform analytics.
Hence, an array structure will have an innate advantage in
performance. In addition, an array-oriented storage structure
is multi-dimensional in nature, as opposed to table structures
which are usually one-dimensional. Again, this is likely to
result in higher performance.

The second dimension concerns the coupling between
the analytics and the DBMS. On the one hand, they can be
independent, and one can run a query, copying the result to
a different address space where the analytics are run. At the
end of the analytics pipeline (often of length one), the result

can be saved back to persistent storage. This will result in
lots of data churn between the DBMS and the analytics. On
the other hand, one can run analytics as user-defined func-
tions in the same address space as the DBMS. Obviously the
tight coupling alternative will lower data churn and should
result in superior performance.

In this light, there are four cells, as noted in Table 1. In
the lower left corner, Map-Reduce used to be the exemplar;
more recently Spark has eclipsed Map-Reduce as the plat-
form with the most interest. There is no persistence mecha-
nism in Spark, which depends on RedShift or H-Base, or ...
for this purpose. Hence, in Spark a user runs a query in some
DBMS to generate a data set, which is loaded into Spark,
where analytics are performed. The DBMSs supported by
Spark are all record or column-oriented, so a conversion to
array representation is required for the analytics.

A notable example in the lower right hand corner is
MADLIB [8], which is a user-defined function library sup-
ported by the RDBMS Greenplum. Other vendors have more
recently started supporting other alternatives; for example
Vertica supports user-defined functions in R. In the upper
right hand corner are array systems with built-in analytics
such as SciDB [15], TileDB [6] or Rasdaman [1].

In the rest of this document, we discuss performance im-
plications. First, one would expect performance to improve
as one moves from lower left to upper right in Table 1. Sec-
ond, most complex analytics reduce to a small collection of
“inner loop” operations, such as matrix multiply, singular-
value decomposition and QR decomposition. All are com-
putationally intensive, typically floating point codes. It is ac-
cepted by most that hardware-specific pipelining can make
nearly an order of magnitude difference in performance on
these sorts of codes. As such, libraries such as BLAS, LA-
PACK, and ScaLAPACK, which call the hardware-optimized
Intel MKL library, will be wildly faster than codes which
don’t use hardware optimization. Of course, hardware op-
timization will make a big difference on dense array calcu-
lations, where the majority of the effort is in floating point
computation. It will be less significance on sparse arrays,
where indexing issues may dominate the computation time.

Third, codes that provide approximate answers are way
faster than ones that produce exact answers. If you can deal
with an approximate answer, then you will save mountains
of time.

Fourth, High Performance Computing (HPC) hardware
are generally configured to support large batch jobs. As
such, they are often structured as a computation server con-
nected to a storage server by networking, whereby a pro-
gram must pre-allocation disk space in a computation server
cache for its storage needs. This is obviously at odds with a
DBMS, which expects to be continuously running as a ser-

2

Readings in Database Systems, 5th Edition (2015)

Loosely coupled Tightly coupled
Array representation SciDB, TileDB, Rasdaman
Table respresentation Spark + HBase MADLib, Vertica + R

Table 1: A Classification of Data Science Platforms

vice. Hence, be aware that you may have trouble with DBMS
systems on HPC environments. An interesting area of explo-
ration is whether HPC machines can deal with both interac-
tive and batch workloads simultaneously without sacrificing
performance.

Fifth, scalable data science codes invariably run on mul-
tiple nodes in a computer network and are often network-
bound [5]. In this case, you must pay careful attention to
networking costs and TCP-IP may not be a good choice. In
general MPI is a higher performance alternative.

Sixth, most analytics codes that we have tested fail to
scale to large data set sizes, either because they run out of
main memory or because they generate temporaries that are
too large. Make sure you test any platform you would con-
sider running on the data set sizes you expect in production!

Seventh, the structure of your analytics pipeline is cru-
cial. If your pipeline is on length one, then tight coupling
is almost certainly a good idea. On the other hand, if the
pipeline is on length 10, loose coupling will perform almost
as well. In incremental operation, expect pipelines of length
one.

In general, all solutions we know of have scalability and
performance problems. Moreover, most of the exemplars
noted above are rapidly moving targets, so performance and
scalability will undoubtedly improve. In summary, it will be
interesting to see which cells in Table 1 have legs and which
ones don’t. The commercial marketplace will be the ultimate
arbitrer!

In my opinion, complex analytics is current in its “wild
west” phase, and we hope that the next edition of the red
book can identify a collection of core seminal papers. In
the meantime, there is substantial research to be performed.
Specifically, we would encourage more benchmarking in this
space in order to identify flaws in existing platforms and
to spur further research and development, especially bench-
marks that look at end-to-end tasks involving both data man-
agement tasks and analytics. This space is moving fast, so
the benchmark results will likely be transient. That’s proba-
bly a good thing: we’re in a phase where the various projects
should be learning from each other.

There is currently a lot of interest in custom parallel al-
gorithms for core analytics tasks like convex optimization;
some of it from the database community. It will be inter-

esting to see if these algorithms can be incorporated into
analytic DBMSs, since they don’t typically follow a tradi-
tional dataflow execution style. An exemplar here is Hog-
wild! [12], which achieves very fast performance by allow-
ing lock-free parallelism in shared memory. Google Down-
pour [4] and Microsoft’s Project Adam [2] both adapt this
basic idea to a distributed context for deep learning.

Another area where exploration is warranted is out-of-
memory algorithms. For example, Spark requires your data
structures to fit into the combined amount of main memory
present on the machines in your cluster. Such solutions will
be brittle, and will almost certainly have scalability prob-
lems.

Furthermore, an interesting topic is the desirable ap-
proach to graph analytics. One can either build special pur-
pose graph analytics, such as GraphX [7] or GraphLab [11]
and connect them to some sort of DBMS. Alternately, one
can simulate such codes with either array analytics, as es-
poused in D4M [10] or table analytics, as suggested in [9].
Again, may the solution space bloom, and the commercial
market place be the arbiter!

Lastly, many analytics codes use MPI for communica-
tion, whereas DBMSs invariably use TCP-IP. Also, parallel
dense analytic packages, such as ScaLAPACK, organize data
into a block-cyclic organization across nodes in a comput-
ing cluster [3]. I know of no DBMS that supports block-
cyclic partitioning. Removing this impedance mismatch be-
tween analytic packages and DBMSs is an interesting re-
search area, one that is targeted by the Intel-sponsored ISTC
on Big Data [14].

Commentary: Joe Hellerstein
6 December 2015

I have a rather different take on this area than Mike, both from
a business perspective and in terms of research opportunities. At
base, I recommend a ”big tent” approach to this area. DB folk have
much to contribute, but we’ll do far better if we play well with oth-
ers.

Let’s look at the industry. First off, advanced analytics of the
sort we’re discussing here will not replace BI as Mike suggests. The
BI industry is healthy and growing. More fundamentally, as noted

1Tukey, John. Exploratory Data Analysis. Pearson, 1977.

3

Readings in Database Systems, 5th Edition (2015)

statistician John Tukey pointed out in his foundational work on Ex-
ploratory Data Analysis,1 a chart is often much more valuable than
a complex statistical model. Respect the chart!

That said, the advanced analytics and data science market is
indeed growing and poised for change. But unlike the BI market,
this is not a category where database technology currently plays a
significant role. The incumbent in this space is SAS, a company
that makes multiple billions of dollars in revenue each year, and is
decidedly not a database company. When VCs look at companies
in this space, they’re looking for ”the next SAS”. SAS users are
not database users. And the users of open-source alternatives like
R are also not database users. If you assume as Mike does that
”data scientists will want to use DBMS technology” — particularly
a monolithic ”analytic DBMS” — you’re swimming upstream in a
strong current.

For a more natural approach to the advanced analytics market,
ask yourself this: what is a serious threat to SAS? Who could take
a significant bite out of the cash that enterprises currently spend
there? Here are some starting points to consider:

1. Open source stats programming: This includes R and
the Python data science ecosystem (NumPy, SciKit-Learn,
iPython Notebook). These solutions don’t currently don’t
scale well, but efforts are underway aggressively to address
those limitations. This ecosystem could evolve more quickly
than SAS.

2. Tight couplings to big data platforms. When the data
is big enough, performance requirements may ”drag” users
to a new platform — namely a platform that already hosts
the big data in their organization. Hence the interest in
”DataFrame” interfaces to platforms like Spark/MLLib, Piv-
otalR/MADlib, and Vertica dplyr. Note that the advanced
analytics community is highly biased toward open source.
The cloud is also an interesting platform here, and not one
where SAS has an advantage.

3. Analytic Services. By this I mean interactive online services
that use analytic methods at their core: recommender sys-
tems, real-time fraud detection, predictive equipment main-
tenance and so on. This space has aggressive system require-
ments for response times, request scaling, fault tolerance and
ongoing evolution that products like SAS don’t address. To-
day, these services are largely built with custom code. This
doesn’t scale across industries — most companies can’t re-
cruit developers that can work at this level. So there is osten-
sibly an opportunity here in commoditizing this technology
for the majority of use cases. But it’s early days for this mar-
ket — it remains to be seen whether analytics service plat-
forms can be made simple enough for commodity deploy-

ment. If the tech evolves, then cloud-based services may
have significant opportunities for disruption here as well.

On the research front, I think it’s critical to think outside the
database box, and collaborate aggressively. To me this almost goes
without saying. Nearly every subfield in computing is working on
big data analytics in some fashion, and smart people from a variety
of areas are quickly learning their own lessons about data and scale.
We can have fun playing with these folks, or we can ignore them to
our detriment.

So where can database research have a big impact in this space?
Some possiblities that look good to me include these:

1. New approaches to Scalability. We have successfully
shown that parallel dataflow — think MADlib, MLlib or
the work of Ordonez at Teradata2 — can take you a long
way toward implementing scalable analytics without doing
violence at the system architecture level. That’s useful to
know. Moving forward, can we do something that is use-
fully faster and more scalable than parallel dataflow over
partitioned data? Is that necessary? Hogwild! has gener-
ated some of the biggest excitement here; note that it’s work
that spans the DB and ML communities.

2. Distributed infrastructure for analytic services. As I
mentioned above, analytic services are an interesting oppor-
tunity for innovation. The system infrastructure issues on
this front are fairly wide open. What are the main compo-
nents of architectures for analytics services? How are they
stitched together? What kind of data consistency is required
across the components? So-called Parameter Servers are a
topic of interest right now, but only address a piece of the
puzzle.3 There has been some initial work on online serv-
ing, evolution and deployment of models.4 I hope there will
be more.

3. Analytic lifecycle and metadata management. This is an
area where I agree with Mike. Analytics is often a people-
intensive exercise, involving data exploration and transfor-
mation in addition to core statistical modeling. Along the
way, a good deal of context needs to be managed to under-
stand how models and data products get developed across a
range of tools and systems. The database commmunity has
perspectives on this area that are highly relevant, including
workflow management, data lineage and materialized view
maintenance. VisTrails is an example of research in this
space that is being used in practice.5 This is an area of press-
ing need in industry as well — especially work that takes
into account the real-world diversity of analytics tools and
systems in the field.

2e.g., Ordonez, C. Integrating K-means clustering with a relational DBMS using SQL. TKDE 18(2) 2006. Also Ordonez, C. Statistical Model Computation
with UDFs. TKDE 22(12), 2010.

3Ho, Q., et al. More effective distributed ML via a stale synchronous parallel parameter server. NIPS 2013.
4Crankshaw, D, et al. The missing piece in complex analytics: Low latency, scalable model management and serving with Velox. CIDR 2015. See also

Schleier-Smith, J. An Architecture for Agile Machine Learning in Real-Time Applications. KDD 2015.
5See http://www.vistrails.org.

4

Readings in Database Systems, 5th Edition (2015)

References

[1] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional database system rasdaman. In
SIGMOD, 1998.

[2] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient and scalable deep learning
training system. In OSDI, 2014.

[3] J. Choi et al. ScaLAPACK: A portable linear algebra library for distributed memory computers—design issues and
performance. In Applied Parallel Computing Computations in Physics, Chemistry and Engineering Science, pages 95–
106. Springer, 1996.

[4] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale
distributed deep networks. In Advances in Neural Information Processing Systems, pages 1223–1231, 2012.

[5] J. Duggan and M. Stonebraker. Incremental elasticity for array databases. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pages 409–420. ACM, 2014.

[6] A. Elmore, J. Duggan, M. Stonebraker, M. Balazinska, U. Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner,
T. Kraska, et al. A demonstration of the BigDAWG polystore system. In VLDB, 2015.

[7] J. E. Gonzales, R. S. Xin, D. Crankshaw, A. Dave, M. J. Franklin, and I. Stoica. Graphx: Unifying data-parallel and
graph-parallel analytics. In OSDI, 2014.

[8] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, et al.
The MADlib analytics library: or MAD skills, the SQL. In VLDB, 2012.

[9] A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker. Vertexica: your relational friend for graph
analytics! In VLDB, 2014.

[10] J. Kepner et al. Dynamic distributed dimensional data model (D4M) database and computation system. In Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, pages 5349–5352. IEEE, 2012.

[11] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. In VLDB, 2012.

[12] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In
Advances in Neural Information Processing Systems, pages 693–701, 2011.

[13] N. Siva. 1000 genomes project. Nature biotechnology, 26(3):256–256, 2008.

[14] M. Stonebraker, S. Madden, and P. Dubey. Intel big data science and technology center vision and execution plan. ACM
SIGMOD Record, 42(1):44–49, 2013.

[15] The SciDB Development Team. Overview of SciDB: large scale array storage, processing and analysis. In SIGMOD,
2010.

5

